
python-valve Documentation
Release 0.0.1

Oliver Ainsworth

December 25, 2015

Contents

1 Interacting with Source Servers 3
1.1 Example . 4
1.2 Utilities . 5

2 Querying the Source Master Server 7
2.1 valve.source.master_server . 7
2.2 Example . 9

3 SteamIDs 11
3.1 The SteamID Class . 11
3.2 Exceptions . 13
3.3 Useful Constants . 13

4 Source Remote Console (RCON) 15
4.1 Example . 15
4.2 The RCON Class . 15
4.3 RCON Messages . 16
4.4 REPL via shell() . 17

5 Steam Web API 19
5.1 Low-level Wrapper . 19
5.2 Interfaces . 21

6 License 27
6.1 Trademarks . 27

7 Indices and tables 29

Python Module Index 31

i

ii

python-valve Documentation, Release 0.0.1

python-valve is a Python library which aims to provide the ability to interace with various Valve services and products,
including: the Steam web API, locally installed Steam clients, Source servers and the Source master server.

Contents:

Contents 1

python-valve Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Interacting with Source Servers

Source provides the “A2S” protocol for querying game servers. This protocol is used by the Steam and in-game
server browsers to list information about servers such as their name, player count and whether or not they’re password
protected. valve.source.server provides a client implementation of A2S.

class valve.source.a2s.ServerQuerier(address, timeout=5.0)
Implements the A2S Source server query protocol

https://developer.valvesoftware.com/wiki/Server_queries

get_info()
Retreive information about the server state

This returns the response from the server which implements __getitem__ for accessing response fields.
For example:

server = ServerQuerier(...)
print server.get_info()["server_name"]

The following fields are available on the response:

Field Description
re-
sponse_type

Always 0x49

server_name The name of the server
map The name of the map being ran by the server
folder The gamedir if the modification being ran by the server. E.g. tf, cstrike, csgo.
game A string identifying the game being ran by the server
app_id The numeric application ID of the game ran by the server. Note that this is the app ID of

the client, not the server. For example, for Team Fortress 2 440 is returned instead of
232250 which is the ID of the server software.

player_count Number of players currently connected
max_players The number of player slots available. Note that player_count may exceed this value

under certain circumstances.
bot_count The number of AI players present
server_type A util.ServerType instance representing the type of server. E.g. Dedicated,

non-dedicated or Source TV relay.
platform A :class‘..util.Platform‘ instances represneting the platform the server is running on. E.g.

Windows, Linux or Mac OS X.
pass-
word_protected

Whether or not a password is required to connect to the server.

vac_enabled Whether or not Valve anti-cheat (VAC) is enabled
version The version string of the server software

3

https://developer.valvesoftware.com/wiki/Server_queries

python-valve Documentation, Release 0.0.1

Currently the extra data field (EDF) is not supported.

get_players()
Retrive a list of all players connected to the server

The following fields are available on the response:

Field Description
response_type Always 0x44
player_count The number of players listed
players A list of player entries

The players field is a list that contains player_count number of messages.PlayerEntry in-
stances which have the same interface as the top-level response object that is returned.

The following fields are available on each player entry:

Field Description
name The name of the player
score Player’s score at the time of the request. What this relates to is dependant on the gamemode

of the server.
dura-
tion

Number of seconds the player has been connected as a float

get_rules()
Retreive the server’s game mode configuration

This method allows you capture a subset of a server’s console variables (often referred to as ‘cvars’,)
specifically those which have the FCVAR_NOTIFY flag set on them. These cvars are used to indicate
game mode’s configuration, such as the gravity setting for the map or whether friendly fire is enabled or
not.

The following fields are available on the response:

Field Description
response_type Always 0x56
rule_count The number of rules
rules A dictionary mapping rule names to their corresponding string value

ping()
Ping the server, returning the round-trip latency in milliseconds

The A2A_PING request is deprecated so this actually sends a A2S_INFO request and times that. The time
difference between the two should be negligble.

1.1 Example

In this example we will query a server, printing out it’s name and the number of players currently conected. Then we’ll
print out all the players sorted score-decesending.

import valve.source.a2s

SERVER_ADDRESS = (..., ...)

server = valve.source.a2s.ServerQuerier(SERVER_ADDRESS)
info = server.get_info()
players = server.get_players()

print "{player_count}/{max_players} {server_name}".format(**info)

4 Chapter 1. Interacting with Source Servers

python-valve Documentation, Release 0.0.1

for player in sorted(players["players"],
key=lambda p: p["score"], reverse=True):

print "{score} {name}".format(**player)

1.2 Utilities

valve.source.util provides a handful of utility classes which are used when querying Source servers.

class valve.source.util.Platform(value)
A Source server platform identifier

This class provides utilities for representing Source server platforms as returned from a A2S_INFO request.
Each platform is ultimately represented by one of the following integers:

ID Platform
76 Linux
108 Linux
109 Mac OS X
111 Mac OS X
119 Windows

Note: Starbound uses 76 instead of 108 for Linux in the old GoldSource style.

__eq__(other)
Check for equality between two platforms

If other is not a Platform instance then an attempt is made to convert it to one using same approach as
__init__(). This means platforms can be compared against integers and strings. For example:

>>>Platform(108) == "linux"
True
>>>Platform(109) == 109
True
>>>Platform(119) == "w"
True

Despite the fact there are two numerical identifers for Mac (109 and 111) comparing either of them together
will yield True.

>>>Platform(109) == Platform(111)
True

__init__(value)
Initialise the platform identifier

The given value will be mapped to a numeric identifier. If the value is already an integer it must then it
must exist in the table above else ValueError is returned.

If value is a one character long string then it’s ordinal value as given by ord() is used. Alternately the
string can be either of the following:

•Linux

•Mac OS X

•Windows

__weakref__
list of weak references to the object (if defined)

1.2. Utilities 5

python-valve Documentation, Release 0.0.1

os_name
Convenience mapping to names returned by os.name

class valve.source.util.ServerType(value)
A Source server platform identifier

This class provides utilities for representing Source server types as returned from a A2S_INFO request. Each
server type is ultimately represented by one of the following integers:

ID Server type
68 Dedicated
100 Dedicated
108 Non-dedicated
112 SourceTV

Note: Starbound uses 68 instead of 100 for a dedicated server in the old GoldSource style.

__eq__(other)
Check for equality between two server types

If other is not a ServerType instance then an attempt is made to convert it to one using same approach as
__init__(). This means server types can be compared against integers and strings. For example:

>>>Server(100) == "dedicated"
True
>>>Platform(108) == 108
True
>>>Platform(112) == "p"
True

__init__(value)
Initialise the server type identifier

The given value will be mapped to a numeric identifier. If the value is already an integer it must then it
must exist in the table above else ValueError is returned.

If value is a one character long string then it’s ordinal value as given by ord() is used. Alternately the
string can be either of the following:

•Dedicated

•Non-Dedicated

•SourceTV

__weakref__
list of weak references to the object (if defined)

6 Chapter 1. Interacting with Source Servers

CHAPTER 2

Querying the Source Master Server

When a Source server starts it can optionally add it self to an index of live servers to enable players to find the server
via matchmaking and the in-game server browsers. It does this by registering it self with the “master server”. The
master server is hosted by Valve but the protocol used to communicate with it is reasonably well documented.

Clients can request a list of server addresses from the master server for a particular region. Optionally, they can also
specify a filtration criteria to restrict what servers are returned. valve.source.master_server provides an
interface for interacting with the master server.

Note: Although “master server” is used in a singular context there are in fact multiple
servers. By default valve.source.master_server.MasterServerQuerier will lookup
hl2master.steampowered.com which, at the time of writing, has three A entries.

2.1 valve.source.master_server

class valve.source.master_server.MasterServerQuerier(address=(u’hl2master.steampowered.com’,
27011), timeout=10.0)

Implements the Source master server query protocol

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol

__iter__()
An unfitlered iterator of all Source servers

This will issue a request for an unfiltered set of server addresses for each region. Addresses are received
in batches but returning a completely unfiltered set will still take a long time and be prone to timeouts.

See find() for making filtered requests.

find(region=u’all’, **filters)
Find servers for a particular region and set of filtering rules

This returns an iterator which yields (host, port) server addresses from the master server.

region spcifies what regions to restrict the search to. It can either be a REGION_ constant or a string
identifying the region. Alternately a list of the strings or REGION_ constants can be used for specifying
multiple regions.

The following region identification strings are supported:

7

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol

python-valve Documentation, Release 0.0.1

String Region(s)
na-east East North America
na-west West North America
na East North American, West North America
sa South America
eu Europe
as Asia, the Middle East
oc Oceania/Australia
af Africa
rest Unclassified servers
all All of the above

Note: “rest” corresponds to all servers that don’t fit with any other region. What causes a server to be
placed in this region by the master server isn’t entirely clear.

The region strings are not case sensitive. Specifying an invalid region identifier will raise a ValueError.

As well as region-based filtering, alternative filters are supported which are documented on the Valve
developer wiki.

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Filter

This method accepts keyword arguments which are used for building the filter string that is sent along with
the request to the master server. Below is a list of all the valid keyword arguments:

Filter Description
type Server type, e.g. “dedicated”. This can be a ServerType instance or any value that can

be converted to a ServerType.
secure Servers using Valve anti-cheat (VAC). This should be a boolean.
gamedir A string specifying the mod being ran by the server. For example: tf, cstrike, csgo,

etc..
map Which map the server is running.
linux Servers running on Linux. Boolean.
empty Servers which are not empty. Boolean.
full Servers which are full. Boolean.
proxy SourceTV relays only. Boolean.
napp Servers not running the game specified by the given application ID. E.g. 440 would

exclude all TF2 servers.
noplay-
ers

Servers that are empty. Boolean

white Whitelisted servers only. Boolean.
game-
type

Server which match all the tags given. This should be set to a list of strings.

game-
data

Servers which match all the given hidden tags. Only applicable for L4D2 servers.

game-
dataor

Servers which match any of the given hidden tags. Only applicable to L4D2 servers.

Note: Your mileage may vary with some of these filters. There’s no real guarantee that the servers
returned by the master server will actually satisfy the filter. Because of this it’s advisable to explicitly
check for compliance by querying each server individually. See valve.source.a2s.

8 Chapter 2. Querying the Source Master Server

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Filter

python-valve Documentation, Release 0.0.1

2.2 Example

In this example we will list all European and Asian Team Fortress 2 servers running the map ctf_2fort and print out
their addresses.

import valve.source.server
import valve.source.master_server

msq = valve.source.master_server.MasterServerQuerier()
try:

for address in msq.find(region=["eu", "as"],
gamedir="tf",
map="ctf_2fort"):

print "{0}:{1}".format(*address)
except valve.source.server.NoResponseError:

print "Master server request timed out!"

2.2. Example 9

python-valve Documentation, Release 0.0.1

10 Chapter 2. Querying the Source Master Server

CHAPTER 3

SteamIDs

SteamID are used in many places within Valve services to identify entities such as users, groups and game servers.
SteamIDs have many different representations which all need to be handled so the valve.steam.id module exists
to provide an mechanism for representing these IDs in a usable fashion.

3.1 The SteamID Class

Rarely will you ever want to instantiate a SteamID directly. Instead it is best to use the
SteamID.from_community_url() and SteamID.from_text() class methods for creating new instances.

class valve.steam.id.SteamID(account_number, instance, type, universe)
Represents a SteamID

A SteamID is broken up into four components: a 32 bit account number, a 20 bit “instance” identifier, a 4 bit
account type and an 8 bit “universe” identifier.

There are 10 known accounts types as listed below. Generally you won’t encounter types other than “individual”
and “group”.

Type Numeric value Can be mapped to URL Constant
Invalid 0 No TYPE_INVALID
Individual 1 Yes TYPE_INDIVIDUAL
Multiseat 2 No TYPE_MULTISEAT
Game server 3 No TYPE_GAME_SERVER
Anonymous game
server

4 No TYPE_ANON_GAME_SERVER

Pending 5 No TYPE_PENDING
Content server 6 No TYPE_CONTENT_SERVER
Group 7 Yes TYPE_CLAN
Chat 8 No TYPE_CHAT
“P2P Super Seeder” 9 No TYPE_P2P_SUPER_SEEDER
Anonymous user 10 No TYPE_ANON_USER

TYPE_-prefixed constants are provided by the valve.steam.id module for the numerical values of each
type.

All SteamIDs can be represented textually as well as by their numerical components. This is typically in the
STEAM_X:Y:Z form where X, Y, Z are the “universe”, “instance” and the account number respectively. There
are two special cases however. If the account type if invalid then “UNKNOWN” is the textual representation.
Similarly “STEAM_ID_PENDING” is used when the type is pending.

11

python-valve Documentation, Release 0.0.1

As well as the the textual representation of SteamIDs there are also the 64 and 32 bit versions which contain
the SteamID components encoded into integers of corresponding width. However the 32-bit representation also
includes a letter to indicate account type.

__int__()
The 64 bit representation of the SteamID

64 bit SteamIDs are only valid for those with the type TYPE_INDIVIDUAL or TYPE_CLAN . For all
other types SteamIDError will be raised.

The 64 bit representation is calculated by multiplying the account number by two then adding the “in-
stance” and then adding another constant which varies based on the account type.

For TYPE_INDIVIDUAL the constant is 0x0110000100000000, whereas for TYPE_CLAN it’s
0x0170000000000000.

__str__()
The textual representation of the SteamID

This is in the STEAM_X:Y:Z form and can be parsed by from_text() to produce an equivalent
instance. Alternately STEAM_ID_PENDING or UNKNOWN may be returned if the account type is
TYPE_PENDING or TYPE_INVALID respectively.

Note: from_text() will still handle the STEAM_ID_PENDING and UNKNOWN cases.

__weakref__
list of weak references to the object (if defined)

as_32()
Returns the 32 bit community ID as a string

This is only applicable for TYPE_INDIVIDUAL, TYPE_CLAN and TYPE_CHAT types. For any other
types, attempting to generate the 32-bit representation will result in a SteamIDError being raised.

as_64()
Returns the 64 bit representation as a string

This is only possible if the ID type is TYPE_INDIVIDUAL or TYPE_CLAN , otherwise SteamIDError
is raised.

base_community_url = ‘http://steamcommunity.com/’
Used for building community URLs

community_url(id64=True)
Returns the full URL to the Steam Community page for the SteamID

This can either be generate a URL from the 64 bit representation (the default) or the 32 bit one. Generating
community URLs is only supported for IDs of type TYPE_INDIVIDUAL and TYPE_CLAN . Attempting
to generate a URL for any other type will result in a SteamIDError being raised.

classmethod from_community_url(id, universe=0)
Parse a Steam community URL into a SteamID instance

This takes a Steam community URL for a profile or group and converts it to a SteamID. The type of the
ID is infered from the type character in 32-bit community urls ([U:1:1] for example) or from the URL
path (/profile or /groups) for 64-bit URLs.

As there is no way to determine the universe directly from URL it must be expliticly set, defaulting to
UNIVERSE_INDIVIDUAL.

Raises SteamIDError if the URL cannot be parsed.

12 Chapter 3. SteamIDs

python-valve Documentation, Release 0.0.1

classmethod from_text(id, type=1)
Parse a SteamID in the STEAM_X:Y:Z form

Takes a teaxtual SteamID in the form STEAM_X:Y:Z and returns a corresponding SteamID instance.
The X represents the account’s ‘universe,’ Z is the account number and Y is either 1 or 0.

As the account type cannot be directly inferred from the SteamID it must be explicitly specified, defaulting
to TYPE_INDIVIDUAL.

The two special IDs STEAM_ID_PENDING and UNKNOWN are also handled returning SteamID instances
with the appropriate types set (TYPE_PENDING and TYPE_INVALID respectively) and with all other
components of the ID set to zero.

type_name
The account type as a string

3.2 Exceptions

exception valve.steam.id.SteamIDError
Bases: exceptions.ValueError

Raised when parsing or building invalid SteamIDs

3.3 Useful Constants

As well as providing the SteamID class, the valve.steam.id module also contains numerous constants which
relate to the contituent parts of a SteamID. These constants map to their numeric equivalent.

3.3.1 Account Types

The following are the various account types that can be encoded into a SteamID. Many of them are seemingly no
longer in use – at least not in public facing services – and you’re only likely to come across TYPE_INDIVIDUAL,
TYPE_CLAN and possibly TYPE_GAME_SERVER.

valve.steam.id.TYPE_INVALID = 0

valve.steam.id.TYPE_INDIVIDUAL = 1

valve.steam.id.TYPE_MULTISEAT = 2

valve.steam.id.TYPE_GAME_SERVER = 3

valve.steam.id.TYPE_ANON_GAME_SERVER = 4

valve.steam.id.TYPE_PENDING = 5

valve.steam.id.TYPE_CONTENT_SERVER = 6

valve.steam.id.TYPE_CLAN = 7

valve.steam.id.TYPE_CHAT = 8

valve.steam.id.TYPE_P2P_SUPER_SEEDER = 9

valve.steam.id.TYPE_ANON_USER = 10

3.2. Exceptions 13

python-valve Documentation, Release 0.0.1

3.3.2 Universes

A SteamID “universe” provides a way of grouping IDs. Typically you’ll only ever come across the
UNIVERSE_INDIVIDUAL universe.

valve.steam.id.UNIVERSE_INDIVIDUAL = 0

valve.steam.id.UNIVERSE_PUBLIC = 1

valve.steam.id.UNIVERSE_BETA = 2

valve.steam.id.UNIVERSE_INTERNAL = 3

valve.steam.id.UNIVERSE_DEV = 4

valve.steam.id.UNIVERSE_RC = 5

14 Chapter 3. SteamIDs

CHAPTER 4

Source Remote Console (RCON)

The remote console (RCON) is available in all Source Dedicated Servers and it provides a way for server operators
to access and administer their servers remotely. The valve.source.rcon module provides an implementation of
the RCON protocol.

RCON is a request-response TCP based protocol with a simple authentication mechanism. The client initiates a
connection with the server and attempts to authenticate by submitting a password. If authentication suceeds then the
client is free to send further requests to the server in the same manner as you may do using the Source in-game console.

Warning: RCON does not use secure transport so the password is sent as plain text.

Note: Many RCON authentication failures in a row from a single host will result in the Source server automatically
banning that IP, preventing any subsequent connection attempts.

4.1 Example

from valve.source.rcon import RCON

SERVER_ADDRESS = ("...", 27015)
PASSWORD = "top_secret"

with RCON(SERVER_ADDRESS, PASSWORD) as rcon:
print(rcon("echo Hello, world!"))

In this example a RCON instance is created to connect to a Source RCON server, authenticating using the given
password. Then the echo RCON command is issued which simply prints out what it receives.

Using the RCON object with the with statement means creation and clean up of the underlying TCP socket will
happen automatically. Also, if the password is specified, the client will authenticate immediately after connecting.

4.2 The RCON Class

The RCON class implements the RCON client protocol. It supports the ability to finely grain transport creation,
connection, authentication and clean up although its encouraged to make use of the with statement as shown in the
example above.

class valve.source.rcon.RCON(address, password=None, timeout=10.0)

15

python-valve Documentation, Release 0.0.1

__call__(command)
Execute a command on the server

This wraps execute() but returns the response body instead of the request Message object.

__enter__()
Connect and optionally authenticate to the server

Authentication will only be attempted if the password attribute is set.

__exit__(exc_type, exc_value, exc_tb)
Disconnect from the server

__weakref__
list of weak references to the object (if defined)

authenticate(password)
Authenticates with the server using the given password.

Raises AuthenticationError if password is incorrect. Note that multiple attempts with the wrong password
will result in the server automatically banning ‘this’ IP.

connect()
Connect to host, creating transport if necessary

execute(command, block=True)
Executes a SRCDS console command.

Returns the Message object that makes up the request sent to the server. If block is True, the response
attribute will be set, unless a NoResposneError was raised whilst waiting for a response.

If block is False, calls must be made to process() until a response is recieved. E.g. use response_to().

Requires that the client is authenticated, otherwise an AuthenticationError is raised.

process()
Reads all avilable data from socket and attempts to process a response. Responses are automatically
attached to their corresponding request.

request(type, body=u’‘)
Send a message to server.

If type is SEVERDATA_EXECCOMAND an addtional SERVERDATA_RESPONSE_VALUE is sent in
order to facilitate correct processing of multi-packet responses.

response_to(request, timeout=None)
Returns a context manager that waits up to a given time for a response to a specific request. Assumes the
request has actually been sent to an RCON server.

If the timeout period is exceeded, NoResponseError is raised.

4.3 RCON Messages

RCON requests and responses are generalised as messages in the python-valve implementation. If you’re
using RCON.__call__() then you won’t need to worry about handling individual messages. However,
RCON.execute() returns these raw messages so their structure is documented below.

class valve.source.rcon.Message(id, type, body=u’‘)

__weakref__
list of weak references to the object (if defined)

16 Chapter 4. Source Remote Console (RCON)

python-valve Documentation, Release 0.0.1

classmethod decode(buffer)
Will attempt to decode a single message from a byte buffer, returning a corresponding Message instance
and the remaining buffer contents if any.

If buffer is does not contain at least one full message, IncompleteMessageError is raised.

encode()
Encode the message to a bytestring

Each packed message inludes the payload size (in bytes,) message ID and message type encoded into a 12
byte header. The header is followed by a null-terimnated ASCII-encoded string and a further trailing null
terminator.

size
Packet size in bytes, minus the ‘size’ fields (4 bytes).

4.4 REPL via shell()

A small convenience function is provided by the valve.source.rcon module for creating command-line REPL
interfaces for RCON connections.

valve.source.rcon.shell(rcon=None)

4.4. REPL via shell() 17

python-valve Documentation, Release 0.0.1

18 Chapter 4. Source Remote Console (RCON)

CHAPTER 5

Steam Web API

The Steam Web API provides a mechanism to use Steam services over an HTTP. The API is divided up into “inter-
faces” with each interface having a number of methods that can be performed on it. Python-valve provides a thin
wrapper on top of these interfaces as well as a higher-level implementation.

Generally you’ll want to use the higher-level interface to the API as it provides greater abstraction and session manage-
ment. However the higher-level API only covers a few core interfaces of the Steam Web API, so it may be necessary
to use the wrapper layer in some circumstances.

Although an API key is not strictly necessary to use the Steam Web API, it is advisable to get an API key. Using an
API key allows access to greater functionality. Also, before using the Steam Web API it is good idea to read the Steam
Web API Terms of Use and Steam Web API Documentation.

5.1 Low-level Wrapper

The Steam Web API is self-documenting via the /ISteamWebAPIUtil/GetSupportedAPIList/v1/ end-
point. This enables python-valve to build the wrapper entirely automatically, which includes validating parameters
and automatic generation of documentation.

The entry-point for using the API wrapper is by constructing a API instance. During initialisation a request is issued
to the GetSupportedAPIList endpoint and the interfaces are constructed. If a Steam Web API key is specified
then a wider selection of interfaces will be available. Note that this can be a relatively time consuming process as the
response returned by GetSupportedAPIList can be quite large. This is especially true when an API key is given
as there are more interfaces to generated.

An instance of each interface is created and bound to the API instance, as it is this API instance that will be responsible
for dispatching the HTTP requests. The interfaces are made available via API.__getitem__(). The interface
objects have methods which correspond to those returned by GetSupportedAPIList.

class valve.steam.api.interface.API(key=None, format=u’json’, versions=None, inter-
faces=None)

__getitem__(interface_name)
Get an interface instance by name

__init__(key=None, format=u’json’, versions=None, interfaces=None)
Initialise an API wrapper

The API is usable without an API key but exposes significantly less functionality, therefore it’s advisable
to use a key.

Response formatters are callables which take the Unicode response from the Steam Web API and turn it
into a more usable Python object, such as dictionary. The Steam API it self can generate responses in either

19

http://steamcommunity.com/dev/apikey
http://steamcommunity.com/dev/apiterms
http://steamcommunity.com/dev/apiterms
http://steamcommunity.com/dev/

python-valve Documentation, Release 0.0.1

JSON, XML or VDF. The formatter callables should have an attribute format which is a string indicating
which textual format they handle. For convenience the format parameter also accepts the strings json,
xml and vdf which are mapped to the json_format(), etree_format() and vdf_format()
formatters respectively.

The interfaces argument can optionally be set to a module containing BaseInterface subclasses
which will be instantiated and bound to the API instance. If not given then the interfaces are loaded using
ISteamWebAPIUtil/GetSupportedAPIList.

The optional versions argument allows specific versions of interface methods to be used. If given,
versions should be a mapping of further mappings keyed against the interface name. The inner mapping
should specify the version of interface method to use which is keyed against the method name. These
mappings don’t need to be complete and can omit methods or even entire interfaces. In which case the
default behaviour is to use the method with the highest version number.

Parameters

• key (str) – a Steam Web API key.

• format – response formatter.

• versions – the interface method versions to use.

• interfaces – a module containing BaseInterface subclasses or None if they
should be loaded for the first time.

api_root = u’https://api.steampowered.com/’

request(http_method, interface, method, version, params=None, format=None)
Issue a HTTP request to the Steam Web API

This is called indirectly by interface methods and should rarely be called directly. The response to the
request is passed through the response formatter which is then returned.

Parameters

• interface (str) – the name of the interface.

• method (str) – the name of the method on the interface.

• version (int) – the version of the method.

• params – a mapping of GET or POST data to be sent with the request.

• format – a response formatter callable to overide format.

session(*args, **kwds)
Create an API sub-session without rebuilding the interfaces

This returns a context manager which yields a new API instance with the same interfaces as the current
one. The difference between this and creating a new API manually is that this will avoid rebuilding the all
interface classes which can be slow.

versions()
Get the versions of the methods for each interface

This returns a dictionary of dictionaries which is keyed against interface names. The inner dictionaries
map method names to method version numbers. This structure is suitable for passing in as the versions
argument to __init__().

20 Chapter 5. Steam Web API

python-valve Documentation, Release 0.0.1

5.1.1 Interface Method Version Pinning

It’s important to be aware of the fact that API interface methods can have multiple versions. For example,
ISteamApps/GetAppList. This means they may take different arguments and returned different responses. The
default behaviour of the API wrapper is to always expose the method with the highest version number.

This is fine in most cases, however it does pose a potential problem. New versions of interface methods are likely
to break backwards compatability. Therefore API provides a mechanism to manually specify the interface method
versions to use via the versions argument to API.__init__().

The if given at all, versions is expected to be a dictionary of dictionaries keyed against interface names. The inner
dictionaries map method names to versions. For example:

{"ISteamApps": {"GetAppList": 1}}

Passsing this into API.__init__() would mean version 1 of ISteamApps/GetAppList would be used in
preference to the default behaviour of using the highest version – wich at the time of writing is version 2.

It is important to pin your interface method versions when your code enters production or otherwise face the risk of
it breaking in the future if and when Valve updates the Steam Web API. The API.pin_versions() method is
provided to help in determining what versions to pin. How to integrate interface method version pinning into existing
code is an excerise for the reader however.

5.1.2 Response Formatters

valve.steam.api.interface.json_format(response)
Parse response as JSON using the standard Python JSON parser

Returns the JSON object encoded in the response.

valve.steam.api.interface.etree_format(response)
Parse response using ElementTree

Returns a xml.etree.ElementTree.Element of the root element of the response.

valve.steam.api.interface.vdf_format(response)
Parse response using valve.vdf

Returns a dictionary decoded from the VDF.

5.2 Interfaces

These interfaces are automatically wrapped and documented. The availability of some interfaces is dependant on
whether or not an API key is given. It should also be noted that as the interfaces are generated automatically they do
not respect the naming conventions as detailed in PEP 8.

class interfaces.IGCVersion_205790(api)

GetClientVersion()

GetServerVersion()

name = u’IGCVersion_205790’

class interfaces.IGCVersion_440(api)

GetClientVersion()

5.2. Interfaces 21

python-valve Documentation, Release 0.0.1

GetServerVersion()

name = u’IGCVersion_440’

class interfaces.IGCVersion_570(api)

GetClientVersion()

GetServerVersion()

name = u’IGCVersion_570’

class interfaces.IGCVersion_730(api)

GetServerVersion()

name = u’IGCVersion_730’

class interfaces.IPortal2Leaderboards_620(api)

GetBucketizedData(leaderboardName)

Parameters leaderboardName (string) – The leaderboard name to fetch data for.

name = u’IPortal2Leaderboards_620’

class interfaces.IPortal2Leaderboards_841(api)

GetBucketizedData(leaderboardName)

Parameters leaderboardName (string) – The leaderboard name to fetch data for.

name = u’IPortal2Leaderboards_841’

class interfaces.ISteamApps(api)

GetAppList()

GetServersAtAddress(addr)

Parameters addr (string) – IP or IP:queryport to list

UpToDateCheck(appid, version)

Parameters

• appid (uint32) – AppID of game

• version (uint32) – The installed version of the game

name = u’ISteamApps’

class interfaces.ISteamDirectory(api)

GetCMList(cellid, maxcount=None)

Parameters

• cellid (uint32) – Client’s Steam cell ID

• maxcount (uint32) – Max number of servers to return

name = u’ISteamDirectory’

22 Chapter 5. Steam Web API

python-valve Documentation, Release 0.0.1

class interfaces.ISteamEnvoy(api)

PaymentOutNotification()

PaymentOutReversalNotification()

name = u’ISteamEnvoy’

class interfaces.ISteamNews(api)

GetNewsForApp(appid, count=None, enddate=None, feeds=None, maxlength=None)

Parameters

• appid (uint32) – AppID to retrieve news for

• count (uint32) – # of posts to retrieve (default 20)

• enddate (uint32) – Retrieve posts earlier than this date (unix epoch timestamp)

• feeds (string) – Comma-seperated list of feed names to return news for

• maxlength (uint32) – Maximum length for the content to return, if this is 0 the full
content is returned, if it’s less then a blurb is generated to fit.

name = u’ISteamNews’

class interfaces.ISteamPayPalPaymentsHub(api)

PayPalPaymentsHubPaymentNotification()

name = u’ISteamPayPalPaymentsHub’

class interfaces.ISteamRemoteStorage(api)

GetCollectionDetails(collectioncount, publishedfileids0)

Parameters

• collectioncount (uint32) – Number of collections being requested

• publishedfileids0 (uint64) – collection ids to get the details for

GetPublishedFileDetails(itemcount, publishedfileids0)

Parameters

• itemcount (uint32) – Number of items being requested

• publishedfileids0 (uint64) – published file id to look up

name = u’ISteamRemoteStorage’

class interfaces.ISteamUserAuth(api)

AuthenticateUser(encrypted_loginkey, sessionkey, steamid)

Parameters

• encrypted_loginkey (rawbinary) – Should be the users hashed loginkey, AES en-
crypted with the sessionkey.

5.2. Interfaces 23

python-valve Documentation, Release 0.0.1

• sessionkey (rawbinary) – Should be a 32 byte random blob of data, which is then
encrypted with RSA using the Steam system’s public key. Randomness is important here
for security.

• steamid (uint64) – Should be the users steamid, unencrypted.

name = u’ISteamUserAuth’

class interfaces.ISteamUserOAuth(api)

GetTokenDetails(access_token)

Parameters access_token (string) – OAuth2 token for which to return details

name = u’ISteamUserOAuth’

class interfaces.ISteamUserStats(api)

GetGlobalAchievementPercentagesForApp(gameid)

Parameters gameid (uint64) – GameID to retrieve the achievement percentages for

GetGlobalStatsForGame(appid, count, name0, enddate=None, startdate=None)

Parameters

• appid (uint32) – AppID that we’re getting global stats for

• count (uint32) – Number of stats get data for

• enddate (uint32) – End date for daily totals (unix epoch timestamp)

• name0 (string) – Names of stat to get data for

• startdate (uint32) – Start date for daily totals (unix epoch timestamp)

GetNumberOfCurrentPlayers(appid)

Parameters appid (uint32) – AppID that we’re getting user count for

name = u’ISteamUserStats’

class interfaces.ISteamWebAPIUtil(api)

GetServerInfo()

GetSupportedAPIList()

name = u’ISteamWebAPIUtil’

class interfaces.ISteamWebUserPresenceOAuth(api)

PollStatus(message, steamid, umqid, pollid=None, secidletime=None, sectimeout=None,
use_accountids=None)

Parameters

• message (uint32) – Message that was last known to the user

• pollid (uint32) – Caller-specific poll id

• secidletime (uint32) – How many seconds is client considering itself idle, e.g. screen
is off

• sectimeout (uint32) – Long-poll timeout in seconds

24 Chapter 5. Steam Web API

python-valve Documentation, Release 0.0.1

• steamid (string) – Steam ID of the user

• umqid (uint64) – UMQ Session ID

• use_accountids (uint32) – Boolean, 0 (default): return steamid_from in output, 1:
return accountid_from

name = u’ISteamWebUserPresenceOAuth’

class interfaces.IPlayerService(api)

RecordOfflinePlaytime(play_sessions, steamid, ticket)

Parameters

• play_sessions (string) –

• steamid (uint64) –

• ticket (string) –

name = u’IPlayerService’

class interfaces.IAccountRecoveryService(api)

ReportAccountRecoveryData(install_config, loginuser_list, machineid, shasentryfile)

Parameters

• install_config (string) –

• loginuser_list (string) –

• machineid (string) –

• shasentryfile (string) –

RetrieveAccountRecoveryData(requesthandle)

Parameters requesthandle (string) –

name = u’IAccountRecoveryService’

Although Python libraries do already exist for many aspects which python-valve aims to cover, many of them are aging
and no long maintained. python-valve hopes to change that and provide an all-in-one library for interfacing with Valve
products and services that is well tested, well documented and actively maintained.

python-valve’s functional test suite for its A2S implentation is actively ran against thousands of servers to ensure that
if any subtle changes are made by Valve that break things they can be quickly picked up and fixed.

5.2. Interfaces 25

python-valve Documentation, Release 0.0.1

26 Chapter 5. Steam Web API

CHAPTER 6

License

Copyright (c) 2013-2014 Oliver Ainsworth

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6.1 Trademarks

Valve, the Valve logo, Half-Life, the Half-Life logo, the Lambda logo, Steam, the Steam logo, Team Fortress, the
Team Fortress logo, Opposing Force, Day of Defeat, the Day of Defeat logo, Counter-Strike, the Counter-Strike logo,
Source, the Source logo, Counter-Strike: Condition Zero, Portal, the Portal logo, Dota, the Dota 2 logo, and Defense
of the Ancients are trademarks and/or registered trademarks of Valve Corporation.

Any reference to these are purely for the purpose of identification. Valve Corporation is not affiliated with python-valve
in any way.

27

python-valve Documentation, Release 0.0.1

28 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

29

python-valve Documentation, Release 0.0.1

30 Chapter 7. Indices and tables

Python Module Index

i
interfaces, 21

v
valve.source.a2s, 3
valve.source.master_server, 7
valve.source.rcon, 14
valve.source.util, 5
valve.steam.api.interface, 19
valve.steam.id, 9

31

python-valve Documentation, Release 0.0.1

32 Python Module Index

Index

Symbols
__call__() (valve.source.rcon.RCON method), 15
__enter__() (valve.source.rcon.RCON method), 16
__eq__() (valve.source.util.Platform method), 5
__eq__() (valve.source.util.ServerType method), 6
__exit__() (valve.source.rcon.RCON method), 16
__getitem__() (valve.steam.api.interface.API method), 19
__init__() (valve.source.util.Platform method), 5
__init__() (valve.source.util.ServerType method), 6
__init__() (valve.steam.api.interface.API method), 19
__int__() (valve.steam.id.SteamID method), 12
__iter__() (valve.source.master_server.MasterServerQuerier

method), 7
__str__() (valve.steam.id.SteamID method), 12
__weakref__ (valve.source.rcon.Message attribute), 16
__weakref__ (valve.source.rcon.RCON attribute), 16
__weakref__ (valve.source.util.Platform attribute), 5
__weakref__ (valve.source.util.ServerType attribute), 6
__weakref__ (valve.steam.id.SteamID attribute), 12

A
API (class in valve.steam.api.interface), 19
api_root (valve.steam.api.interface.API attribute), 20
as_32() (valve.steam.id.SteamID method), 12
as_64() (valve.steam.id.SteamID method), 12
authenticate() (valve.source.rcon.RCON method), 16
AuthenticateUser() (interfaces.ISteamUserAuth method),

23

B
base_community_url (valve.steam.id.SteamID attribute),

12

C
community_url() (valve.steam.id.SteamID method), 12
connect() (valve.source.rcon.RCON method), 16

D
decode() (valve.source.rcon.Message class method), 16

E
encode() (valve.source.rcon.Message method), 17
etree_format() (in module valve.steam.api.interface), 21
execute() (valve.source.rcon.RCON method), 16

F
find() (valve.source.master_server.MasterServerQuerier

method), 7
from_community_url() (valve.steam.id.SteamID class

method), 12
from_text() (valve.steam.id.SteamID class method), 12

G
get_info() (valve.source.a2s.ServerQuerier method), 3
get_players() (valve.source.a2s.ServerQuerier method), 4
get_rules() (valve.source.a2s.ServerQuerier method), 4
GetAppList() (interfaces.ISteamApps method), 22
GetBucketizedData() (inter-

faces.IPortal2Leaderboards_620 method),
22

GetBucketizedData() (inter-
faces.IPortal2Leaderboards_841 method),
22

GetClientVersion() (interfaces.IGCVersion_205790
method), 21

GetClientVersion() (interfaces.IGCVersion_440 method),
21

GetClientVersion() (interfaces.IGCVersion_570 method),
22

GetCMList() (interfaces.ISteamDirectory method), 22
GetCollectionDetails() (interfaces.ISteamRemoteStorage

method), 23
GetGlobalAchievementPercentagesForApp() (inter-

faces.ISteamUserStats method), 24
GetGlobalStatsForGame() (interfaces.ISteamUserStats

method), 24
GetNewsForApp() (interfaces.ISteamNews method), 23
GetNumberOfCurrentPlayers() (inter-

faces.ISteamUserStats method), 24

33

python-valve Documentation, Release 0.0.1

GetPublishedFileDetails() (inter-
faces.ISteamRemoteStorage method), 23

GetServerInfo() (interfaces.ISteamWebAPIUtil method),
24

GetServersAtAddress() (interfaces.ISteamApps method),
22

GetServerVersion() (interfaces.IGCVersion_205790
method), 21

GetServerVersion() (interfaces.IGCVersion_440 method),
21

GetServerVersion() (interfaces.IGCVersion_570 method),
22

GetServerVersion() (interfaces.IGCVersion_730 method),
22

GetSupportedAPIList() (interfaces.ISteamWebAPIUtil
method), 24

GetTokenDetails() (interfaces.ISteamUserOAuth
method), 24

I
IAccountRecoveryService (class in interfaces), 25
IGCVersion_205790 (class in interfaces), 21
IGCVersion_440 (class in interfaces), 21
IGCVersion_570 (class in interfaces), 22
IGCVersion_730 (class in interfaces), 22
interfaces (module), 21
IPlayerService (class in interfaces), 25
IPortal2Leaderboards_620 (class in interfaces), 22
IPortal2Leaderboards_841 (class in interfaces), 22
ISteamApps (class in interfaces), 22
ISteamDirectory (class in interfaces), 22
ISteamEnvoy (class in interfaces), 22
ISteamNews (class in interfaces), 23
ISteamPayPalPaymentsHub (class in interfaces), 23
ISteamRemoteStorage (class in interfaces), 23
ISteamUserAuth (class in interfaces), 23
ISteamUserOAuth (class in interfaces), 24
ISteamUserStats (class in interfaces), 24
ISteamWebAPIUtil (class in interfaces), 24
ISteamWebUserPresenceOAuth (class in interfaces), 24

J
json_format() (in module valve.steam.api.interface), 21

M
MasterServerQuerier (class in

valve.source.master_server), 7
Message (class in valve.source.rcon), 16

N
name (interfaces.IAccountRecoveryService attribute), 25
name (interfaces.IGCVersion_205790 attribute), 21
name (interfaces.IGCVersion_440 attribute), 22

name (interfaces.IGCVersion_570 attribute), 22
name (interfaces.IGCVersion_730 attribute), 22
name (interfaces.IPlayerService attribute), 25
name (interfaces.IPortal2Leaderboards_620 attribute), 22
name (interfaces.IPortal2Leaderboards_841 attribute), 22
name (interfaces.ISteamApps attribute), 22
name (interfaces.ISteamDirectory attribute), 22
name (interfaces.ISteamEnvoy attribute), 23
name (interfaces.ISteamNews attribute), 23
name (interfaces.ISteamPayPalPaymentsHub attribute),

23
name (interfaces.ISteamRemoteStorage attribute), 23
name (interfaces.ISteamUserAuth attribute), 24
name (interfaces.ISteamUserOAuth attribute), 24
name (interfaces.ISteamUserStats attribute), 24
name (interfaces.ISteamWebAPIUtil attribute), 24
name (interfaces.ISteamWebUserPresenceOAuth at-

tribute), 25

O
os_name (valve.source.util.Platform attribute), 5

P
PaymentOutNotification() (interfaces.ISteamEnvoy

method), 23
PaymentOutReversalNotification() (inter-

faces.ISteamEnvoy method), 23
PayPalPaymentsHubPaymentNotification() (inter-

faces.ISteamPayPalPaymentsHub method),
23

ping() (valve.source.a2s.ServerQuerier method), 4
Platform (class in valve.source.util), 5
PollStatus() (interfaces.ISteamWebUserPresenceOAuth

method), 24
process() (valve.source.rcon.RCON method), 16

R
RCON (class in valve.source.rcon), 15
RecordOfflinePlaytime() (interfaces.IPlayerService

method), 25
ReportAccountRecoveryData() (inter-

faces.IAccountRecoveryService method),
25

request() (valve.source.rcon.RCON method), 16
request() (valve.steam.api.interface.API method), 20
response_to() (valve.source.rcon.RCON method), 16
RetrieveAccountRecoveryData() (inter-

faces.IAccountRecoveryService method),
25

S
ServerQuerier (class in valve.source.a2s), 3
ServerType (class in valve.source.util), 6
session() (valve.steam.api.interface.API method), 20

34 Index

python-valve Documentation, Release 0.0.1

shell() (in module valve.source.rcon), 17
size (valve.source.rcon.Message attribute), 17
SteamID (class in valve.steam.id), 11
SteamIDError, 13

T
TYPE_ANON_GAME_SERVER (in module

valve.steam.id), 13
TYPE_ANON_USER (in module valve.steam.id), 13
TYPE_CHAT (in module valve.steam.id), 13
TYPE_CLAN (in module valve.steam.id), 13
TYPE_CONTENT_SERVER (in module valve.steam.id),

13
TYPE_GAME_SERVER (in module valve.steam.id), 13
TYPE_INDIVIDUAL (in module valve.steam.id), 13
TYPE_INVALID (in module valve.steam.id), 13
TYPE_MULTISEAT (in module valve.steam.id), 13
type_name (valve.steam.id.SteamID attribute), 13
TYPE_P2P_SUPER_SEEDER (in module

valve.steam.id), 13
TYPE_PENDING (in module valve.steam.id), 13

U
UNIVERSE_BETA (in module valve.steam.id), 14
UNIVERSE_DEV (in module valve.steam.id), 14
UNIVERSE_INDIVIDUAL (in module valve.steam.id),

14
UNIVERSE_INTERNAL (in module valve.steam.id), 14
UNIVERSE_PUBLIC (in module valve.steam.id), 14
UNIVERSE_RC (in module valve.steam.id), 14
UpToDateCheck() (interfaces.ISteamApps method), 22

V
valve.source.a2s (module), 3
valve.source.master_server (module), 7
valve.source.rcon (module), 14
valve.source.util (module), 5
valve.steam.api.interface (module), 19
valve.steam.id (module), 9
vdf_format() (in module valve.steam.api.interface), 21
versions() (valve.steam.api.interface.API method), 20

Index 35

	Interacting with Source Servers
	Example
	Utilities

	Querying the Source Master Server
	valve.source.master_server
	Example

	SteamIDs
	The SteamID Class
	Exceptions
	Useful Constants

	Source Remote Console (RCON)
	Example
	The RCON Class
	RCON Messages
	REPL via shell()

	Steam Web API
	Low-level Wrapper
	Interfaces

	License
	Trademarks

	Indices and tables
	Python Module Index

