
python-valve Documentation
Release 0.2.0

Oliver Ainsworth

Sep 11, 2017





Contents

1 Interacting with Source Servers 3
1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Queriers and Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Identifying Server Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Querying the Source Master Server 9
2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 SteamIDs 13
3.1 The SteamID Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Useful Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Source Remote Console (RCON) 19
4.1 High-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Core API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Command-line Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Steam Web API 25
5.1 Low-level Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 License 33
6.1 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Indices and tables 35

Python Module Index 37

i



ii



python-valve Documentation, Release 0.2.0

python-valve is a Python library which aims to provide the ability to interface with various Valve services and products,
including: the Steam web API, locally installed Steam clients, Source servers and the Source master server.

Contents:

Contents 1



python-valve Documentation, Release 0.2.0

2 Contents



CHAPTER 1

Interacting with Source Servers

Source provides the “A2S” protocol for querying game servers. This protocol is used by the Steam and in-game
server browsers to list information about servers such as their name, player count and whether or not they’re password
protected. valve.source.a2s provides a client implementation of A2S.

class valve.source.a2s.ServerQuerier(address, timeout=5.0)
Implements the A2S Source server query protocol.

https://developer.valvesoftware.com/wiki/Server_queries

Note: Instantiating this class creates a socket. Be sure to close the querier once finished with it. See valve.
source.BaseQuerier.

info()
Retreive information about the server state

This returns the response from the server which implements __getitem__ for accessing response fields.
For example:

with ServerQuerier(...) as server:
print(server.info()["server_name"])

The following fields are available on the response:

3

https://developer.valvesoftware.com/wiki/Server_queries


python-valve Documentation, Release 0.2.0

Field Description
re-
sponse_type

Always 0x49

server_name The name of the server
map The name of the map being ran by the server
folder The gamedir if the modification being ran by the server. E.g. tf, cstrike, csgo.
game A string identifying the game being ran by the server
app_id The numeric application ID of the game ran by the server. Note that this is the app ID of

the client, not the server. For example, for Team Fortress 2 440 is returned instead of
232250 which is the ID of the server software.

player_count Number of players currently connected. See players() for caveats about the accuracy
of this field.

max_players The number of player slots available. Note that player_count may exceed this value
under certain circumstances. See players().

bot_count The number of AI players present
server_type A util.ServerType instance representing the type of server. E.g. Dedicated,

non-dedicated or Source TV relay.
platform A util.Platform instances represneting the platform the server is running on. E.g.

Windows, Linux or Mac OS X.
pass-
word_protected

Whether or not a password is required to connect to the server.

vac_enabled Whether or not Valve anti-cheat (VAC) is enabled
version The version string of the server software

Currently the extra data field (EDF) is not supported.

ping()
Ping the server, returning the round-trip latency in milliseconds

The A2A_PING request is deprecated so this actually sends a A2S_INFO request and times that. The time
difference between the two should be negligble.

players()
Retrive a list of all players connected to the server

The following fields are available on the response:

Field Description
response_type Always 0x44
player_count The number of players listed
players A list of player entries

The players field is a list that contains player_count number of messages.PlayerEntry in-
stances which have the same interface as the top-level response object that is returned.

The following fields are available on each player entry:

Field Description
name The name of the player
score Player’s score at the time of the request. What this relates to is dependant on the gamemode

of the server.
dura-
tion

Number of seconds the player has been connected as a float

Note: Under certain circumstances, some servers may return a player list which contains empty name
fields. This can lead to player_count being misleading.

Filtering out players with empty names may yield a more accurate enumeration of players:

4 Chapter 1. Interacting with Source Servers



python-valve Documentation, Release 0.2.0

with ServerQuerier(...) as query:
players = []
for player in query.players()["players"]:

if player["name"]:
players.append(player)

player_count = len(players)

rules()
Retreive the server’s game mode configuration

This method allows you capture a subset of a server’s console variables (often referred to as ‘cvars’,)
specifically those which have the FCVAR_NOTIFY flag set on them. These cvars are used to indicate
game mode’s configuration, such as the gravity setting for the map or whether friendly fire is enabled or
not.

The following fields are available on the response:

Field Description
response_type Always 0x56
rule_count The number of rules
rules A dictionary mapping rule names to their corresponding string value

Example

In this example we will query a server, printing out it’s name and the number of players currently conected. Then we’ll
print out all the players sorted score-decesending.

import valve.source.a2s

SERVER_ADDRESS = (..., ...)

with valve.source.a2s.ServerQuerier(SERVER_ADDRESS) as server:
info = server.info()
players = server.players()

print("{player_count}/{max_players} {server_name}".format(**info))
for player in sorted(players["players"],

key=lambda p: p["score"], reverse=True):
print("{score} {name}".format(**player))

Queriers and Exceptions

Both valve.source.a2s.ServerQuerier and valve.source.master_server.
MasterServerQuerier are based on a common querier interface. They also raise similar exceptions. All
of these live in the valve.source module.

class valve.source.BaseQuerier(address, timeout=5.0)
Base class for implementing source server queriers.

When an instance of this class is initialised a socket is created. It’s important that, once a querier is to be
discarded, the associated socket be closed via close(). For example:

1.1. Example 5



python-valve Documentation, Release 0.2.0

querier = valve.source.BaseQuerier(('...', 27015))
try:

querier.request(...)
finally:

querier.close()

When server queriers are used as context managers, the socket will be cleaned up automatically. Hence it’s
preferably to use the with statement over the try-finally pattern described above:

with valve.source.BaseQuerier(('...', 27015)) as querier:
querier.request(...)

Once a querier has been closed, any attempts to make additional requests will result in a
QuerierClosedError to be raised.

Variables

• host – Host requests will be sent to.

• port – Port number requests will be sent to.

• timeout – How long to wait for a response to a request.

close()
Close the querier’s socket.

It is safe to call this multiple times.

get_response()
Wait for a response to a request.

Raises

• NoResponseError – If the configured timeout is reached before a response is re-
ceived.

• QuerierClosedError – If the querier has been closed.

Returns The raw response as a bytes.

request(*request)
Issue a request.

The given request segments will be encoded and combined to form the final message that is sent to the
configured address.

Parameters request (valve.source.messages.Message) – Request message seg-
ments.

Raises QuerierClosedError – If the querier has been closed.

exception valve.source.NoResponseError
Raised when a server querier doesn’t receive a response.

exception valve.source.QuerierClosedError
Raised when attempting to use a querier after it’s closed.

Identifying Server Platforms

valve.source.util provides a handful of utility classes which are used when querying Source servers.

6 Chapter 1. Interacting with Source Servers



python-valve Documentation, Release 0.2.0

class valve.source.util.Platform(value)
A Source server platform identifier

This class provides utilities for representing Source server platforms as returned from a A2S_INFO request.
Each platform is ultimately represented by one of the following integers:

ID Platform
76 Linux
108 Linux
109 Mac OS X
111 Mac OS X
119 Windows

Note: Starbound uses 76 instead of 108 for Linux in the old GoldSource style.

__eq__(other)
Check for equality between two platforms

If other is not a Platform instance then an attempt is made to convert it to one using same approach as
__init__(). This means platforms can be compared against integers and strings. For example:

>>>Platform(108) == "linux"
True
>>>Platform(109) == 109
True
>>>Platform(119) == "w"
True

Despite the fact there are two numerical identifers for Mac (109 and 111) comparing either of them together
will yield True.

>>>Platform(109) == Platform(111)
True

__init__(value)
Initialise the platform identifier

The given value will be mapped to a numeric identifier. If the value is already an integer it must then it
must exist in the table above else ValueError is returned.

If value is a one character long string then it’s ordinal value as given by ord() is used. Alternately the
string can be either of the following:

•Linux

•Mac OS X

•Windows

__weakref__
list of weak references to the object (if defined)

os_name
Convenience mapping to names returned by os.name

class valve.source.util.ServerType(value)
A Source server platform identifier

This class provides utilities for representing Source server types as returned from a A2S_INFO request. Each
server type is ultimately represented by one of the following integers:

1.3. Identifying Server Platforms 7



python-valve Documentation, Release 0.2.0

ID Server type
68 Dedicated
100 Dedicated
108 Non-dedicated
112 SourceTV

Note: Starbound uses 68 instead of 100 for a dedicated server in the old GoldSource style.

__eq__(other)
Check for equality between two server types

If other is not a ServerType instance then an attempt is made to convert it to one using same approach as
__init__(). This means server types can be compared against integers and strings. For example:

>>>Server(100) == "dedicated"
True
>>>Platform(108) == 108
True
>>>Platform(112) == "p"
True

__init__(value)
Initialise the server type identifier

The given value will be mapped to a numeric identifier. If the value is already an integer it must then it
must exist in the table above else ValueError is returned.

If value is a one character long string then it’s ordinal value as given by ord() is used. Alternately the
string can be either of the following:

•Dedicated

•Non-Dedicated

•SourceTV

__weakref__
list of weak references to the object (if defined)

8 Chapter 1. Interacting with Source Servers



CHAPTER 2

Querying the Source Master Server

When a Source server starts it can optionally add it self to an index of live servers to enable players to find the server
via matchmaking and the in-game server browsers. It does this by registering it self with the “master server”. The
master server is hosted by Valve but the protocol used to communicate with it is reasonably well documented.

Clients can request a list of server addresses from the master server for a particular region. Optionally, they can also
specify a filtration criteria to restrict what servers are returned. valve.source.master_server provides an
interface for interacting with the master server.

Note: Although “master server” is used in a singular context there are in fact multiple servers. By default
valve.source.master_server.MasterServerQuerier will lookup hl2master.steampowered.
com which, at the time of writing, has three A entries.

class valve.source.master_server.MasterServerQuerier(address=(‘hl2master.steampowered.com’,
27011), timeout=10.0)

Implements the Source master server query protocol

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol

Note: Instantiating this class creates a socket. Be sure to close the querier once finished with it. See valve.
source.BaseQuerier.

__iter__()
An unfitlered iterator of all Source servers

This will issue a request for an unfiltered set of server addresses for each region. Addresses are received
in batches but returning a completely unfiltered set will still take a long time and be prone to timeouts.

Note: If a request times out then the iterator will terminate early. Previous versions would propagate a
NoResponseError.

See find() for making filtered requests.

9

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol


python-valve Documentation, Release 0.2.0

find(region=’all’, duplicates=<Duplicates.SKIP: ‘skip’>, **filters)
Find servers for a particular region and set of filtering rules

This returns an iterator which yields (host, port) server addresses from the master server.

region spcifies what regions to restrict the search to. It can either be a REGION_ constant or a string
identifying the region. Alternately a list of the strings or REGION_ constants can be used for specifying
multiple regions.

The following region identification strings are supported:

String Region(s)
na-east East North America
na-west West North America
na East North American, West North America
sa South America
eu Europe
as Asia, the Middle East
oc Oceania/Australia
af Africa
rest Unclassified servers
all All of the above

Note: “rest” corresponds to all servers that don’t fit with any other region. What causes a server to be
placed in this region by the master server isn’t entirely clear.

The region strings are not case sensitive. Specifying an invalid region identifier will raise a ValueError.

As well as region-based filtering, alternative filters are supported which are documented on the Valve
developer wiki.

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Filter

This method accepts keyword arguments which are used for building the filter string that is sent along with
the request to the master server. Below is a list of all the valid keyword arguments:

10 Chapter 2. Querying the Source Master Server

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Filter


python-valve Documentation, Release 0.2.0

Filter Description
type Server type, e.g. “dedicated”. This can be a ServerType instance or any value that can

be converted to a ServerType.
secure Servers using Valve anti-cheat (VAC). This should be a boolean.
gamedir A string specifying the mod being ran by the server. For example: tf, cstrike, csgo,

etc..
map Which map the server is running.
linux Servers running on Linux. Boolean.
empty Servers which are not empty. Boolean.
full Servers which are full. Boolean.
proxy SourceTV relays only. Boolean.
napp Servers not running the game specified by the given application ID. E.g. 440 would

exclude all TF2 servers.
noplay-
ers

Servers that are empty. Boolean

white Whitelisted servers only. Boolean.
game-
type

Server which match all the tags given. This should be set to a list of strings.

game-
data

Servers which match all the given hidden tags. Only applicable for L4D2 servers.

game-
dataor

Servers which match any of the given hidden tags. Only applicable to L4D2 servers.

Note: Your mileage may vary with some of these filters. There’s no real guarantee that the servers
returned by the master server will actually satisfy the filter. Because of this it’s advisable to explicitly
check for compliance by querying each server individually. See valve.source.a2s.

The master server may return duplicate addresses. By default, these duplicates are excldued from the
iterator returned by this method. See Duplicates for controller this behaviour.

class valve.source.master_server.Duplicates
Bases: enum.Enum

Behaviour for duplicate addresses.

These values are intended to be used with MasterServerQuerier.find() to control how duplicate ad-
dresses returned by the master server are treated.

Variables

• KEEP – All addresses are returned, even duplicates.

• SKIP – Skip duplicate addresses.

• STOP – Stop returning addresses when a duplicate is encountered.

Example

In this example we will list all unique European and Asian Team Fortress 2 servers running the map ctf_2fort.

import valve.source.master_server

with valve.source.master_server.MasterServerQuerier() as msq:
servers = msq.find(

region=["eu", "as"],

2.1. Example 11



python-valve Documentation, Release 0.2.0

duplicates="skip",
gamedir="tf",
map="ctf_2fort",

)
for host, port in servers:

print "{0}:{1}".format(host, port)

12 Chapter 2. Querying the Source Master Server



CHAPTER 3

SteamIDs

SteamID are used in many places within Valve services to identify entities such as users, groups and game servers.
SteamIDs have many different representations which all need to be handled so the valve.steam.id module exists
to provide an mechanism for representing these IDs in a usable fashion.

The SteamID Class

Rarely will you ever want to instantiate a SteamID directly. Instead it is best to use the SteamID.
from_community_url() and SteamID.from_text() class methods for creating new instances.

class valve.steam.id.SteamID(account_number, instance, type, universe)
Represents a SteamID

A SteamID is broken up into four components: a 32 bit account number, a 20 bit “instance” identifier, a 4 bit
account type and an 8 bit “universe” identifier.

There are 10 known accounts types as listed below. Generally you won’t encounter types other than “individual”
and “group”.

Type Numeric value Can be mapped to URL Constant
Invalid 0 No TYPE_INVALID
Individual 1 Yes TYPE_INDIVIDUAL
Multiseat 2 No TYPE_MULTISEAT
Game server 3 No TYPE_GAME_SERVER
Anonymous game server 4 No TYPE_ANON_GAME_SERVER
Pending 5 No TYPE_PENDING
Content server 6 No TYPE_CONTENT_SERVER
Group 7 Yes TYPE_CLAN
Chat 8 No TYPE_CHAT
“P2P Super Seeder” 9 No TYPE_P2P_SUPER_SEEDER
Anonymous user 10 No TYPE_ANON_USER

TYPE_-prefixed constants are provided by the valve.steam.id module for the numerical values of each
type.

13



python-valve Documentation, Release 0.2.0

All SteamIDs can be represented textually as well as by their numerical components. This is typically in the
STEAM_X:Y:Z form where X, Y, Z are the “universe”, “instance” and the account number respectively. There
are two special cases however. If the account type if invalid then “UNKNOWN” is the textual representation.
Similarly “STEAM_ID_PENDING” is used when the type is pending.

As well as the the textual representation of SteamIDs there are also the 64 and 32 bit versions which contain
the SteamID components encoded into integers of corresponding width. However the 32-bit representation also
includes a letter to indicate account type.

__int__()
The 64 bit representation of the SteamID

64 bit SteamIDs are only valid for those with the type TYPE_INDIVIDUAL or TYPE_CLAN . For all
other types SteamIDError will be raised.

The 64 bit representation is calculated by multiplying the account number by two then adding the “in-
stance” and then adding another constant which varies based on the account type.

For TYPE_INDIVIDUAL the constant is 0x0110000100000000, whereas for TYPE_CLAN it’s
0x0170000000000000.

__str__()
The textual representation of the SteamID

This is in the STEAM_X:Y:Z form and can be parsed by from_text() to produce an equivalent
instance. Alternately STEAM_ID_PENDING or UNKNOWN may be returned if the account type is
TYPE_PENDING or TYPE_INVALID respectively.

Note: from_text() will still handle the STEAM_ID_PENDING and UNKNOWN cases.

__weakref__
list of weak references to the object (if defined)

as_32()
Returns the 32 bit community ID as a string

This is only applicable for TYPE_INDIVIDUAL, TYPE_CLAN and TYPE_CHAT types. For any other
types, attempting to generate the 32-bit representation will result in a SteamIDError being raised.

as_64()
Returns the 64 bit representation as a string

This is only possible if the ID type is TYPE_INDIVIDUAL or TYPE_CLAN , otherwise SteamIDError
is raised.

community_url(id64=True)
Returns the full URL to the Steam Community page for the SteamID

This can either be generate a URL from the 64 bit representation (the default) or the 32 bit one. Generating
community URLs is only supported for IDs of type TYPE_INDIVIDUAL and TYPE_CLAN . Attempting
to generate a URL for any other type will result in a SteamIDError being raised.

classmethod from_community_url(id, universe=0)
Parse a Steam community URL into a SteamID instance

This takes a Steam community URL for a profile or group and converts it to a SteamID. The type of the
ID is infered from the type character in 32-bit community urls ([U:1:1] for example) or from the URL
path (/profile or /groups) for 64-bit URLs.

As there is no way to determine the universe directly from URL it must be expliticly set, defaulting to
UNIVERSE_INDIVIDUAL.

14 Chapter 3. SteamIDs



python-valve Documentation, Release 0.2.0

Raises SteamIDError if the URL cannot be parsed.

classmethod from_text(id, type=1)
Parse a SteamID in the STEAM_X:Y:Z form

Takes a teaxtual SteamID in the form STEAM_X:Y:Z and returns a corresponding SteamID instance.
The X represents the account’s ‘universe,’ Z is the account number and Y is either 1 or 0.

As the account type cannot be directly inferred from the SteamID it must be explicitly specified, defaulting
to TYPE_INDIVIDUAL.

The two special IDs STEAM_ID_PENDING and UNKNOWN are also handled returning SteamID instances
with the appropriate types set (TYPE_PENDING and TYPE_INVALID respectively) and with all other
components of the ID set to zero.

type_name
The account type as a string

Exceptions

exception valve.steam.id.SteamIDError
Bases: ValueError

Raised when parsing or building invalid SteamIDs

Useful Constants

As well as providing the SteamID class, the valve.steam.id module also contains numerous constants which
relate to the contituent parts of a SteamID. These constants map to their numeric equivalent.

Account Types

The following are the various account types that can be encoded into a SteamID. Many of them are seemingly no
longer in use – at least not in public facing services – and you’re only likely to come across TYPE_INDIVIDUAL,
TYPE_CLAN and possibly TYPE_GAME_SERVER.

valve.steam.id.TYPE_INVALID = 0
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_INDIVIDUAL = 1
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The

3.2. Exceptions 15



python-valve Documentation, Release 0.2.0

base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_MULTISEAT = 2
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_GAME_SERVER = 3
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_ANON_GAME_SERVER = 4
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_PENDING = 5
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_CONTENT_SERVER = 6
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_CLAN = 7
int(x=0) -> integer int(x, base=10) -> integer

16 Chapter 3. SteamIDs



python-valve Documentation, Release 0.2.0

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_CHAT = 8
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_P2P_SUPER_SEEDER = 9
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.TYPE_ANON_USER = 10
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

Universes

A SteamID “universe” provides a way of grouping IDs. Typically you’ll only ever come across the
UNIVERSE_INDIVIDUAL universe.

valve.steam.id.UNIVERSE_INDIVIDUAL = 0
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.UNIVERSE_PUBLIC = 1
int(x=0) -> integer int(x, base=10) -> integer

3.3. Useful Constants 17



python-valve Documentation, Release 0.2.0

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.UNIVERSE_BETA = 2
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.UNIVERSE_INTERNAL = 3
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.UNIVERSE_DEV = 4
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

valve.steam.id.UNIVERSE_RC = 5
int(x=0) -> integer int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return
x.__int__(). For floating point numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an
integer literal in the given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded by whitespace. The
base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer
literal. >>> int(‘0b100’, base=0) 4

18 Chapter 3. SteamIDs



CHAPTER 4

Source Remote Console (RCON)

Source remote console (or RCON) provides a way for server operators to administer and interact with their servers
remotely in the same manner as the console provided by srcds. The valve.rcon module provides an implemen-
tation of the RCON protocol.

RCON is a simple, TCP-based request-response protocol with support for basic authentication. The RCON client
initiates a connection to a server and attempts to authenticate by submitting a password. If authentication succeeds
then the client is free to send further requests. These subsequent requests are interpreted the same way as if you were
to type them into the srcds console.

Warning: Passwords and console commands are sent in plain text. Tunneling the connection through a secure
channel may be advisable where possible.

Note: Multiple RCON authentication failures in a row from a single host will result in the Source server automatically
banning that IP, preventing any subsequent connection attempts.

High-level API

The valve.rcon module provides a number of ways to interact with RCON servers. The simplest is the
execute() function which executes a single command on the server and returns the response as a string.

In many cases this may be sufficient but it’s important to consider that execute() will create a new, temporary
connection for every command. If order to reuse a connection the RCON class should be used directly.

Also note that execute() only returns Unicode strings which may prove problematic in some cases. See Unicode
and String Encoding.

valve.rcon.execute(address, password, command)
Execute a command on an RCON server.

19



python-valve Documentation, Release 0.2.0

This is a very high-level interface which connects to the given RCON server using the provided credentials and
executes a command.

Parameters

• address – the address of the server to connect to as a tuple containing the host as a string
and the port as an integer.

• password (str) – the password to use to authenticate the connection.

• command (str) – the command to execute on the server.

Raises

• UnicodeDecodeError – if the response could not be decoded into Unicode.

• RCONCommunicationError – if a connection to the RCON server could not be made.

• RCONAuthenticationError – if authentication failed, either due to being banned or
providing the wrong password.

• RCONMessageError – if the response body couldn’t be decoded into a Unicode string.

Returns the response to the command as a Unicode string.

Core API

The core API for the RCON implementation is split encapsulated by two distinct classes: RCONMessage and RCON .

Representing RCON Messages

Each RCON message, whether a request or a response, is represented by an instance of the RCONMessage class.
Each message has three fields: the message ID, type and contents or body. The message ID of a request is reflected
back to the client when the server returns a response but is otherwise unsued by this implementation. The type is one
of four constants (represented by three distinct values) which signifies the semantics of the message’s ID and body.
The body it self is an opaque string; its value depends on the type of message.

class valve.rcon.RCONMessage(id_, type_, body_or_text)
Represents a RCON request or response.

classmethod decode(buffer_)
Decode a message from a bytestring.

This will attempt to decode a single message from the start of the given buffer. If the buffer contains more
than a single message then this must be called multiple times.

Raises MessageError – if the buffer doesn’t contain a valid message.

Returns a tuple containing the decoded RCONMessage and the remnants of the buffer. If the
buffer contained exactly one message then the remaning buffer will be empty.

encode()
Encode message to a bytestring.

text
Get the body of the message as Unicode.

Raises UnicodeDecodeError – if the body cannot be decoded as ASCII.

Returns the body of the message as a Unicode string.

20 Chapter 4. Source Remote Console (RCON)



python-valve Documentation, Release 0.2.0

Note: It has been reported that some servers may not return valid ASCII as they’re documented to do so.
Therefore you should always handle the potential UnicodeDecodeError.

If the correct encoding is known you can manually decode body for your self.

Unicode and String Encoding

The type of the body field of RCON messages is documented as being a double null-terminated, ASCII-encoded string.
At the Python level though both Unicode strings and raw byte string interfaces are provided by RCONMessage.text
and RCONMessage.body respectively.

In Python you are encouraged to deal with text (a.k.a. Unicode strings) in preference to raw byte strings unless
strictly neccessary. However, it has been reported that under some conditions RCON servers may return invalid
ASCII sequences in the response body. Therefore it is possible that the textual representation of the body cannot be
determined and attempts to access RCONMessage.text will fail with a UnicodeDecodeError being raised.

It appears – but is not conclusively determined – that RCON servers in fact return UTF-8-encoded message bodies,
hence why ASCII seems to to work in most cases. Until this can be categorically proven as the behaviour that should
be expected Python-valve will continue to attempt to process ASCII strings.

If you come across UnicodeDecodeError whilst accessing response bodies you will instead have to make-do and
handle the raw byte strings manually. For example:

response = rcon.execute("command")
response_text = response.body.decode("utf-8")

If this is undesirable it is also possible to globally set the encoding used by RCONMessage but this not particularly
encouraged:

import valve.rcon

valve.rcon.RCONMessage.ENCODING = "utf-8"

Creating RCON Connections

class valve.rcon.RCON(address, password, timeout=None)
Represents an RCON connection.

__call__(command)
Invoke a command.

This is a higher-level version of execute() that always blocks and only returns the response body.

Raises RCONMessageError – if the response body couldn’t be decoded into a Unicode string.

Returns the response to the command as a Unicode string.

authenticate(timeout=None)
Authenticate with the server.

This sends an authentication message to the connected server containing the password. If the
password is correct the server sends back an acknowledgement and will allow all subsequent
commands to be executed.

4.2. Core API 21



python-valve Documentation, Release 0.2.0

However, if the password is wrong the server will either notify the client or immediately drop the
connection depending on whether the client IP has been banned or not. In either case, the client
connection will be closed and an exception raised.

Note: Client banning IP banning happens automatically after a few failed attempts at authenti-
cation. Assuming you can direct access to the server’s console you can unban the client IP using
the removeip command:

Banning xxx.xxx.xxx.xx for rcon hacking attempts
] removeip xxx.xxx.xxx.xxx
removeip: filter removed for xxx.xxx.xxx.xxx

param timeout the number of seconds to wait for a response. If not given the
connection-global timeout is used.

raises RCONAuthenticationError if authentication failed, either due to being banned
or providing the wrong password.

raises RCONTimeoutError if the server takes too long to respond. The connection
will be closed in this case as well.

Raises

• RCONError – if closed.

• RCONError – if not connected.

authenticated
Determine if the connection is authenticated.

close()
Close connection to a server.

closed
Determine if the connection has been closed.

connect()
Create a connection to a server.

Raises

• RCONError – if closed.

• RCONError – if connected.

connected
Determine if a connection has been made.

Note: Strictly speaking this does not guarantee that any subsequent attempt to execute a command will
succeed as the underlying socket may be closed by the server at any time. It merely indicates that a
previous call to connect() was successful.

cvarlist()
Get all ConVars for an RCON connection.

This will issue a cvarlist command to it in order to enumerate all available ConVars.

Returns an iterator of :class:‘ConVar‘s which may be empty.

22 Chapter 4. Source Remote Console (RCON)



python-valve Documentation, Release 0.2.0

execute(command, block=True, timeout=None)
Invoke a command.

Invokes the given command on the conncted server. By default this will block (up to the timeout)
for a response. This can be disabled if you don’t care about the response.

param str command the command to execute.

param bool block whether or not to wait for a response.

param timeout the number of seconds to wait for a response. If not given the
connection-global timeout is used.

raises RCONCommunicationError if the socket is closed or in any other erroneous
state whilst issuing the request or receiving the response.

raises RCONTimeoutError if the timeout is reached waiting for a response. This
doesn’t close the connection but the response is lost.

returns the response to the command as a RCONMessage or None depending on
whether block was True or not.

Raises

• RCONError – if not authenticated.

• RCONError – if not connected.

Example

import valve.rcon

address = ("rcon.example.com", 27015)
password = "top-secrect-password"
with valve.rcon.RCON(address, password) as rcon:

response = rcon.execute("echo Hello, world!")
print(response.text)

Command-line Client

As well as providing means to programatically interact with RCON servers, the valve.rcon module also provides
an interactive, command-line client. A client shell can be started by calling shell() or running the valve.rcon
module.

valve.rcon.shell(address=None, password=None)
A simple interactive RCON shell.

This will connect to the server identified by the given address using the given password. If a password is not
given then the shell will prompt for it. If no address is given, then no connection will be made automatically and
the user will have to do it manually using !connect.

Once connected the shell simply dispatches commands and prints the response to stdout.

Parameters

• address – a network address tuple containing the host and port of the RCON server.

• password (str) – the password for the server. This is ignored if address is not given.

4.3. Command-line Client 23



python-valve Documentation, Release 0.2.0

Using the RCON Shell

When shell() is executed, an interactive RCON shell is created. This shell reads commands from stdin, passes
them to a connected RCON server then prints the response to stdout in a conventional read-eval-print pattern.

By default, commands are treated as plain RCON commmands and are passed directly to the connected server for
evaluation. However, commands prefixed with an exclamation mark are interpreted by the shell it self:

!connect Connect to an RCON server. This command accepts two space-separated arguments: the address of the
server and the corresponding password; the latter is optional. If the password is not given the user is prompted
for it.

If the shell is already connected to a server then it will disconnect first before connecting to the new one.

!disconnect Disconnect from the current RCON server.

!shutdown Shutdown the RCON server. This actually just sends an exit command to the server. This must be
used instead of exit as its behaviour could prove confusing with !exit otherwise.

!exit Exit the shell. This does not shutdown the RCON server.

Help is available via the help command. When connected, an optional argument can be provided which is the RCON
command to show help for.

When connected to a server, command completions are provided via the tab key.

Command-line Invocation

The valve.rcon module is runnable. When ran with no arguments its the same as calling shell() with defaults.
As with shell(), the address and password can be provided as a part of the invoking command:

$ python -m valve.rcon
$ python -m valve.rcon rcon.example.com:27015
$ python -m valve.rcon rcon.example.com:27015 --password TOP-SECRET

Warning: Passing sensitive information via command-line arguments, such as your RCON password, can be
dangerous. For example, it can show up in ps output.

Executing a Single Command

When ran, the module has two modes of execution: the default, which will spawn an interactive RCON shell and the
single command execution mode. When passed the --execute argument, python -m valve.rcon will run
the given command and exit with a status code of zero upon completion. The command response is printed to stdout.

This can be useful for simple scripting of RCON commands outside of a Python environment, such as in a shell script.

$ python -m valve.rcon rcon.example.com:27015 \
--password TOP-SECRET --execute "echo Hello, world!"

Usage

24 Chapter 4. Source Remote Console (RCON)



CHAPTER 5

Steam Web API

The Steam Web API provides a mechanism to use Steam services over an HTTP. The API is divided up into “inter-
faces” with each interface having a number of methods that can be performed on it. Python-valve provides a thin
wrapper on top of these interfaces as well as a higher-level implementation.

Generally you’ll want to use the higher-level interface to the API as it provides greater abstraction and session manage-
ment. However the higher-level API only covers a few core interfaces of the Steam Web API, so it may be necessary
to use the wrapper layer in some circumstances.

Although an API key is not strictly necessary to use the Steam Web API, it is advisable to get an API key. Using an
API key allows access to greater functionality. Also, before using the Steam Web API it is good idea to read the Steam
Web API Terms of Use and Steam Web API Documentation.

Low-level Wrapper

The Steam Web API is self-documenting via the /ISteamWebAPIUtil/GetSupportedAPIList/v1/ end-
point. This enables python-valve to build the wrapper entirely automatically, which includes validating parameters
and automatic generation of documentation.

The entry-point for using the API wrapper is by constructing a API instance. During initialisation a request is issued
to the GetSupportedAPIList endpoint and the interfaces are constructed. If a Steam Web API key is specified
then a wider selection of interfaces will be available. Note that this can be a relatively time consuming process as the
response returned by GetSupportedAPIList can be quite large. This is especially true when an API key is given
as there are more interfaces to generated.

An instance of each interface is created and bound to the API instance, as it is this API instance that will be responsible
for dispatching the HTTP requests. The interfaces are made available via API.__getitem__(). The interface
objects have methods which correspond to those returned by GetSupportedAPIList.

class valve.steam.api.interface.API(key=None, format=’json’, versions=None, inter-
faces=None)

__getitem__(interface_name)
Get an interface instance by name

25

http://steamcommunity.com/dev/apikey
http://steamcommunity.com/dev/apiterms
http://steamcommunity.com/dev/apiterms
http://steamcommunity.com/dev/


python-valve Documentation, Release 0.2.0

__init__(key=None, format=’json’, versions=None, interfaces=None)
Initialise an API wrapper

The API is usable without an API key but exposes significantly less functionality, therefore it’s advisable
to use a key.

Response formatters are callables which take the Unicode response from the Steam Web API and turn it
into a more usable Python object, such as dictionary. The Steam API it self can generate responses in either
JSON, XML or VDF. The formatter callables should have an attribute format which is a string indicating
which textual format they handle. For convenience the format parameter also accepts the strings json,
xml and vdf which are mapped to the json_format(), etree_format() and vdf_format()
formatters respectively.

The interfaces argument can optionally be set to a module containing BaseInterface subclasses
which will be instantiated and bound to the API instance. If not given then the interfaces are loaded using
ISteamWebAPIUtil/GetSupportedAPIList.

The optional versions argument allows specific versions of interface methods to be used. If given,
versions should be a mapping of further mappings keyed against the interface name. The inner mapping
should specify the version of interface method to use which is keyed against the method name. These
mappings don’t need to be complete and can omit methods or even entire interfaces. In which case the
default behaviour is to use the method with the highest version number.

Parameters

• key (str) – a Steam Web API key.

• format – response formatter.

• versions – the interface method versions to use.

• interfaces – a module containing BaseInterface subclasses or None if they
should be loaded for the first time.

api_root = ‘https://api.steampowered.com/’

request(http_method, interface, method, version, params=None, format=None)
Issue a HTTP request to the Steam Web API

This is called indirectly by interface methods and should rarely be called directly. The response to the
request is passed through the response formatter which is then returned.

Parameters

• interface (str) – the name of the interface.

• method (str) – the name of the method on the interface.

• version (int) – the version of the method.

• params – a mapping of GET or POST data to be sent with the request.

• format – a response formatter callable to overide format.

session()
Create an API sub-session without rebuilding the interfaces

This returns a context manager which yields a new API instance with the same interfaces as the current
one. The difference between this and creating a new API manually is that this will avoid rebuilding the all
interface classes which can be slow.

versions()
Get the versions of the methods for each interface

26 Chapter 5. Steam Web API



python-valve Documentation, Release 0.2.0

This returns a dictionary of dictionaries which is keyed against interface names. The inner dictionaries
map method names to method version numbers. This structure is suitable for passing in as the versions
argument to __init__().

Interface Method Version Pinning

It’s important to be aware of the fact that API interface methods can have multiple versions. For example,
ISteamApps/GetAppList. This means they may take different arguments and returned different responses. The
default behaviour of the API wrapper is to always expose the method with the highest version number.

This is fine in most cases, however it does pose a potential problem. New versions of interface methods are likely
to break backwards compatability. Therefore API provides a mechanism to manually specify the interface method
versions to use via the versions argument to API.__init__().

The if given at all, versions is expected to be a dictionary of dictionaries keyed against interface names. The inner
dictionaries map method names to versions. For example:

{"ISteamApps": {"GetAppList": 1}}

Passsing this into API.__init__() would mean version 1 of ISteamApps/GetAppList would be used in
preference to the default behaviour of using the highest version – wich at the time of writing is version 2.

It is important to pin your interface method versions when your code enters production or otherwise face the risk of
it breaking in the future if and when Valve updates the Steam Web API. The API.pin_versions() method is
provided to help in determining what versions to pin. How to integrate interface method version pinning into existing
code is an excerise for the reader however.

Response Formatters

valve.steam.api.interface.json_format(response)
Parse response as JSON using the standard Python JSON parser

Returns the JSON object encoded in the response.

valve.steam.api.interface.etree_format(response)
Parse response using ElementTree

Returns a xml.etree.ElementTree.Element of the root element of the response.

valve.steam.api.interface.vdf_format(response)
Parse response using valve.vdf

Returns a dictionary decoded from the VDF.

Interfaces

These interfaces are automatically wrapped and documented. The availability of some interfaces is dependant on
whether or not an API key is given. It should also be noted that as the interfaces are generated automatically they do
not respect the naming conventions as detailed in PEP 8.

class interfaces.IGCVersion_205790(api)

GetClientVersion()

GetServerVersion()

5.2. Interfaces 27



python-valve Documentation, Release 0.2.0

name = ‘IGCVersion_205790’

class interfaces.IGCVersion_440(api)

GetClientVersion()

GetServerVersion()

name = ‘IGCVersion_440’

class interfaces.IGCVersion_570(api)

GetClientVersion()

GetServerVersion()

name = ‘IGCVersion_570’

class interfaces.IGCVersion_730(api)

GetServerVersion()

name = ‘IGCVersion_730’

class interfaces.IPortal2Leaderboards_620(api)

GetBucketizedData(leaderboardName)

Parameters leaderboardName (string) – The leaderboard name to fetch data for.

name = ‘IPortal2Leaderboards_620’

class interfaces.IPortal2Leaderboards_841(api)

GetBucketizedData(leaderboardName)

Parameters leaderboardName (string) – The leaderboard name to fetch data for.

name = ‘IPortal2Leaderboards_841’

class interfaces.ISteamApps(api)

GetAppList()

GetServersAtAddress(addr)

Parameters addr (string) – IP or IP:queryport to list

UpToDateCheck(appid, version)

Parameters

• appid (uint32) – AppID of game

• version (uint32) – The installed version of the game

name = ‘ISteamApps’

class interfaces.ISteamDirectory(api)

GetCMList(cellid, maxcount=None)

28 Chapter 5. Steam Web API



python-valve Documentation, Release 0.2.0

Parameters

• cellid (uint32) – Client’s Steam cell ID

• maxcount (uint32) – Max number of servers to return

name = ‘ISteamDirectory’

class interfaces.ISteamEnvoy(api)

PaymentOutReversalNotification()

name = ‘ISteamEnvoy’

class interfaces.ISteamNews(api)

GetNewsForApp(appid, count=None, enddate=None, feeds=None, maxlength=None)

Parameters

• appid (uint32) – AppID to retrieve news for

• count (uint32) – # of posts to retrieve (default 20)

• enddate (uint32) – Retrieve posts earlier than this date (unix epoch timestamp)

• feeds (string) – Comma-seperated list of feed names to return news for

• maxlength (uint32) – Maximum length for the content to return, if this is 0 the full
content is returned, if it’s less then a blurb is generated to fit.

name = ‘ISteamNews’

class interfaces.ISteamRemoteStorage(api)

GetCollectionDetails(collectioncount, publishedfileids0)

Parameters

• collectioncount (uint32) – Number of collections being requested

• publishedfileids0 (uint64) – collection ids to get the details for

GetPublishedFileDetails(itemcount, publishedfileids0)

Parameters

• itemcount (uint32) – Number of items being requested

• publishedfileids0 (uint64) – published file id to look up

name = ‘ISteamRemoteStorage’

class interfaces.ISteamUserAuth(api)

AuthenticateUser(encrypted_loginkey, sessionkey, steamid)

Parameters

• encrypted_loginkey (rawbinary) – Should be the users hashed loginkey, AES
encrypted with the sessionkey.

• sessionkey (rawbinary) – Should be a 32 byte random blob of data, which is then
encrypted with RSA using the Steam system’s public key. Randomness is important here
for security.

5.2. Interfaces 29



python-valve Documentation, Release 0.2.0

• steamid (uint64) – Should be the users steamid, unencrypted.

name = ‘ISteamUserAuth’

class interfaces.ISteamUserOAuth(api)

GetTokenDetails(access_token)

Parameters access_token (string) – OAuth2 token for which to return details

name = ‘ISteamUserOAuth’

class interfaces.ISteamUserStats(api)

GetGlobalAchievementPercentagesForApp(gameid)

Parameters gameid (uint64) – GameID to retrieve the achievement percentages for

GetGlobalStatsForGame(appid, count, name0, enddate=None, startdate=None)

Parameters

• appid (uint32) – AppID that we’re getting global stats for

• count (uint32) – Number of stats get data for

• enddate (uint32) – End date for daily totals (unix epoch timestamp)

• name0 (string) – Names of stat to get data for

• startdate (uint32) – Start date for daily totals (unix epoch timestamp)

GetNumberOfCurrentPlayers(appid)

Parameters appid (uint32) – AppID that we’re getting user count for

name = ‘ISteamUserStats’

class interfaces.ISteamWebAPIUtil(api)

GetServerInfo()

GetSupportedAPIList()

name = ‘ISteamWebAPIUtil’

class interfaces.ISteamWebUserPresenceOAuth(api)

PollStatus(message, steamid, umqid, pollid=None, secidletime=None, sectimeout=None,
use_accountids=None)

Parameters

• message (uint32) – Message that was last known to the user

• pollid (uint32) – Caller-specific poll id

• secidletime (uint32) – How many seconds is client considering itself idle, e.g.
screen is off

• sectimeout (uint32) – Long-poll timeout in seconds

• steamid (string) – Steam ID of the user

• umqid (uint64) – UMQ Session ID

30 Chapter 5. Steam Web API



python-valve Documentation, Release 0.2.0

• use_accountids (uint32) – Boolean, 0 (default): return steamid_from in output, 1:
return accountid_from

name = ‘ISteamWebUserPresenceOAuth’

class interfaces.ITFSystem_440(api)

GetWorldStatus()

name = ‘ITFSystem_440’

class interfaces.IPlayerService(api)

RecordOfflinePlaytime(play_sessions, steamid, ticket)

Parameters

• play_sessions (string) –

• steamid (uint64) –

• ticket (string) –

name = ‘IPlayerService’

class interfaces.IAccountRecoveryService(api)

ReportAccountRecoveryData(install_config, loginuser_list, machineid, shasentryfile)

Parameters

• install_config (string) –

• loginuser_list (string) –

• machineid (string) –

• shasentryfile (string) –

RetrieveAccountRecoveryData(requesthandle)

Parameters requesthandle (string) –

name = ‘IAccountRecoveryService’

Although Python libraries do already exist for many aspects which python-valve aims to cover, many of them are
ageing and no long maintained. python-valve hopes to change that and provide an all-in-one library for interfacing
with Valve products and services that is well tested, well documented and actively maintained.

python-valve’s functional test suite for its A2S implementation is actively ran against thousands of servers to ensure
that if any subtle changes are made by Valve that break things they can be quickly picked up and fixed.

5.2. Interfaces 31



python-valve Documentation, Release 0.2.0

32 Chapter 5. Steam Web API



CHAPTER 6

License

Copyright (c) 2013-2017 Oliver Ainsworth

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Trademarks

Valve, the Valve logo, Half-Life, the Half-Life logo, the Lambda logo, Steam, the Steam logo, Team Fortress, the
Team Fortress logo, Opposing Force, Day of Defeat, the Day of Defeat logo, Counter-Strike, the Counter-Strike logo,
Source, the Source logo, Counter-Strike: Condition Zero, Portal, the Portal logo, Dota, the Dota 2 logo, and Defense
of the Ancients are trademarks and/or registered trademarks of Valve Corporation.

Any reference to these are purely for the purpose of identification. Valve Corporation is not affiliated with python-valve
in any way.

33



python-valve Documentation, Release 0.2.0

34 Chapter 6. License



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

35



python-valve Documentation, Release 0.2.0

36 Chapter 7. Indices and tables



Python Module Index

i
interfaces, 27

v
valve.rcon, 18
valve.source, 5
valve.source.a2s, 3
valve.source.util, 6
valve.steam.api.interface, 25
valve.steam.id, 12

37



python-valve Documentation, Release 0.2.0

38 Python Module Index



Index

Symbols
__call__() (valve.rcon.RCON method), 21
__eq__() (valve.source.util.Platform method), 7
__eq__() (valve.source.util.ServerType method), 8
__getitem__() (valve.steam.api.interface.API method), 25
__init__() (valve.source.util.Platform method), 7
__init__() (valve.source.util.ServerType method), 8
__init__() (valve.steam.api.interface.API method), 25
__int__() (valve.steam.id.SteamID method), 14
__iter__() (valve.source.master_server.MasterServerQuerier

method), 9
__str__() (valve.steam.id.SteamID method), 14
__weakref__ (valve.source.util.Platform attribute), 7
__weakref__ (valve.source.util.ServerType attribute), 8
__weakref__ (valve.steam.id.SteamID attribute), 14

A
API (class in valve.steam.api.interface), 25
api_root (valve.steam.api.interface.API attribute), 26
as_32() (valve.steam.id.SteamID method), 14
as_64() (valve.steam.id.SteamID method), 14
authenticate() (valve.rcon.RCON method), 21
authenticated (valve.rcon.RCON attribute), 22
AuthenticateUser() (interfaces.ISteamUserAuth method),

29

B
BaseQuerier (class in valve.source), 5

C
close() (valve.rcon.RCON method), 22
close() (valve.source.BaseQuerier method), 6
closed (valve.rcon.RCON attribute), 22
community_url() (valve.steam.id.SteamID method), 14
connect() (valve.rcon.RCON method), 22
connected (valve.rcon.RCON attribute), 22
cvarlist() (valve.rcon.RCON method), 22

D
decode() (valve.rcon.RCONMessage class method), 20

Duplicates (class in valve.source.master_server), 11

E
encode() (valve.rcon.RCONMessage method), 20
etree_format() (in module valve.steam.api.interface), 27
execute() (in module valve.rcon), 19
execute() (valve.rcon.RCON method), 22

F
find() (valve.source.master_server.MasterServerQuerier

method), 9
from_community_url() (valve.steam.id.SteamID class

method), 14
from_text() (valve.steam.id.SteamID class method), 15

G
get_response() (valve.source.BaseQuerier method), 6
GetAppList() (interfaces.ISteamApps method), 28
GetBucketizedData() (inter-

faces.IPortal2Leaderboards_620 method),
28

GetBucketizedData() (inter-
faces.IPortal2Leaderboards_841 method),
28

GetClientVersion() (interfaces.IGCVersion_205790
method), 27

GetClientVersion() (interfaces.IGCVersion_440 method),
28

GetClientVersion() (interfaces.IGCVersion_570 method),
28

GetCMList() (interfaces.ISteamDirectory method), 28
GetCollectionDetails() (interfaces.ISteamRemoteStorage

method), 29
GetGlobalAchievementPercentagesForApp() (inter-

faces.ISteamUserStats method), 30
GetGlobalStatsForGame() (interfaces.ISteamUserStats

method), 30
GetNewsForApp() (interfaces.ISteamNews method), 29
GetNumberOfCurrentPlayers() (inter-

faces.ISteamUserStats method), 30

39



python-valve Documentation, Release 0.2.0

GetPublishedFileDetails() (inter-
faces.ISteamRemoteStorage method), 29

GetServerInfo() (interfaces.ISteamWebAPIUtil method),
30

GetServersAtAddress() (interfaces.ISteamApps method),
28

GetServerVersion() (interfaces.IGCVersion_205790
method), 27

GetServerVersion() (interfaces.IGCVersion_440 method),
28

GetServerVersion() (interfaces.IGCVersion_570 method),
28

GetServerVersion() (interfaces.IGCVersion_730 method),
28

GetSupportedAPIList() (interfaces.ISteamWebAPIUtil
method), 30

GetTokenDetails() (interfaces.ISteamUserOAuth
method), 30

GetWorldStatus() (interfaces.ITFSystem_440 method),
31

I
IAccountRecoveryService (class in interfaces), 31
IGCVersion_205790 (class in interfaces), 27
IGCVersion_440 (class in interfaces), 28
IGCVersion_570 (class in interfaces), 28
IGCVersion_730 (class in interfaces), 28
info() (valve.source.a2s.ServerQuerier method), 3
interfaces (module), 27
IPlayerService (class in interfaces), 31
IPortal2Leaderboards_620 (class in interfaces), 28
IPortal2Leaderboards_841 (class in interfaces), 28
ISteamApps (class in interfaces), 28
ISteamDirectory (class in interfaces), 28
ISteamEnvoy (class in interfaces), 29
ISteamNews (class in interfaces), 29
ISteamRemoteStorage (class in interfaces), 29
ISteamUserAuth (class in interfaces), 29
ISteamUserOAuth (class in interfaces), 30
ISteamUserStats (class in interfaces), 30
ISteamWebAPIUtil (class in interfaces), 30
ISteamWebUserPresenceOAuth (class in interfaces), 30
ITFSystem_440 (class in interfaces), 31

J
json_format() (in module valve.steam.api.interface), 27

M
MasterServerQuerier (class in

valve.source.master_server), 9

N
name (interfaces.IAccountRecoveryService attribute), 31
name (interfaces.IGCVersion_205790 attribute), 27

name (interfaces.IGCVersion_440 attribute), 28
name (interfaces.IGCVersion_570 attribute), 28
name (interfaces.IGCVersion_730 attribute), 28
name (interfaces.IPlayerService attribute), 31
name (interfaces.IPortal2Leaderboards_620 attribute), 28
name (interfaces.IPortal2Leaderboards_841 attribute), 28
name (interfaces.ISteamApps attribute), 28
name (interfaces.ISteamDirectory attribute), 29
name (interfaces.ISteamEnvoy attribute), 29
name (interfaces.ISteamNews attribute), 29
name (interfaces.ISteamRemoteStorage attribute), 29
name (interfaces.ISteamUserAuth attribute), 30
name (interfaces.ISteamUserOAuth attribute), 30
name (interfaces.ISteamUserStats attribute), 30
name (interfaces.ISteamWebAPIUtil attribute), 30
name (interfaces.ISteamWebUserPresenceOAuth at-

tribute), 31
name (interfaces.ITFSystem_440 attribute), 31
NoResponseError, 6

O
os_name (valve.source.util.Platform attribute), 7

P
PaymentOutReversalNotification() (inter-

faces.ISteamEnvoy method), 29
ping() (valve.source.a2s.ServerQuerier method), 4
Platform (class in valve.source.util), 6
players() (valve.source.a2s.ServerQuerier method), 4
PollStatus() (interfaces.ISteamWebUserPresenceOAuth

method), 30

Q
QuerierClosedError, 6

R
RCON (class in valve.rcon), 21
RCONMessage (class in valve.rcon), 20
RecordOfflinePlaytime() (interfaces.IPlayerService

method), 31
ReportAccountRecoveryData() (inter-

faces.IAccountRecoveryService method),
31

request() (valve.source.BaseQuerier method), 6
request() (valve.steam.api.interface.API method), 26
RetrieveAccountRecoveryData() (inter-

faces.IAccountRecoveryService method),
31

rules() (valve.source.a2s.ServerQuerier method), 5

S
ServerQuerier (class in valve.source.a2s), 3
ServerType (class in valve.source.util), 7

40 Index



python-valve Documentation, Release 0.2.0

session() (valve.steam.api.interface.API method), 26
shell() (in module valve.rcon), 23
SteamID (class in valve.steam.id), 13
SteamIDError, 15

T
text (valve.rcon.RCONMessage attribute), 20
TYPE_ANON_GAME_SERVER (in module

valve.steam.id), 16
TYPE_ANON_USER (in module valve.steam.id), 17
TYPE_CHAT (in module valve.steam.id), 17
TYPE_CLAN (in module valve.steam.id), 16
TYPE_CONTENT_SERVER (in module valve.steam.id),

16
TYPE_GAME_SERVER (in module valve.steam.id), 16
TYPE_INDIVIDUAL (in module valve.steam.id), 15
TYPE_INVALID (in module valve.steam.id), 15
TYPE_MULTISEAT (in module valve.steam.id), 16
type_name (valve.steam.id.SteamID attribute), 15
TYPE_P2P_SUPER_SEEDER (in module

valve.steam.id), 17
TYPE_PENDING (in module valve.steam.id), 16

U
UNIVERSE_BETA (in module valve.steam.id), 18
UNIVERSE_DEV (in module valve.steam.id), 18
UNIVERSE_INDIVIDUAL (in module valve.steam.id),

17
UNIVERSE_INTERNAL (in module valve.steam.id), 18
UNIVERSE_PUBLIC (in module valve.steam.id), 17
UNIVERSE_RC (in module valve.steam.id), 18
UpToDateCheck() (interfaces.ISteamApps method), 28

V
valve.rcon (module), 18
valve.source (module), 5
valve.source.a2s (module), 3
valve.source.util (module), 6
valve.steam.api.interface (module), 25
valve.steam.id (module), 12
vdf_format() (in module valve.steam.api.interface), 27
versions() (valve.steam.api.interface.API method), 26

Index 41


	Interacting with Source Servers
	Example
	Queriers and Exceptions
	Identifying Server Platforms

	Querying the Source Master Server
	Example

	SteamIDs
	The SteamID Class
	Exceptions
	Useful Constants

	Source Remote Console (RCON)
	High-level API
	Core API
	Command-line Client

	Steam Web API
	Low-level Wrapper
	Interfaces

	License
	Trademarks

	Indices and tables
	Python Module Index

